
Syntactic and
Dependency Parsing

Natalie Parde, Ph.D.
Department of Computer
Science
University of Illinois at
Chicago

CS 421: Natural Language
Processing
Fall 2019

Many slides adapted from Jurafsky and Martin
(https://web.stanford.edu/~jurafsky/slp3/) and
Ben-Gurion University’s NLP course
(https://www.cs.bgu.ac.il/~michaluz/seminar/CK
Y1.pdf).

https://web.stanford.edu/~jurafsky/slp3/
https://www.cs.bgu.ac.il/~michaluz/seminar/CKY1.pdf

What is
syntactic
parsing?

The process of automatically recognizing
sentences and assigning syntactic
(grammatical) structure to them.

9/17/19 Natalie Parde - UIC CS 421 2

Why is syntactic parsing useful?

• Lots of reasons!
• Grammar checking

• Sentences that can’t be parsed may be grammatically incorrect (or at least hard
to read)

• Semantic analysis
• Downstream applications

• Question answering
• Information extraction

What courses were taught by UIC CS assistant professors in 2019?

Subject = courses …don’t return a list of UIC CS assistant professors!

9/17/19 Natalie Parde - UIC CS 421 3

Parsing algorithms are one of the core
tools for analyzing natural language.
• Parsing algorithms automatically describe the

syntactic structure of sentences in terms of
context-free grammars (such as those
discussed last week)

• This can be viewed as a search problem:
• Given the set of all possible parse trees, find

the correct parse tree for this sentence.

9/17/19 Natalie Parde - UIC CS 421 4

Recognition
vs. Parsing

• Recognition: Deciding whether a sentence
belongs to the language specified by a formal
grammar.

• Parsing: Producing a parse tree for the
sentence based on that formal grammar.

• Both tasks are necessary for generating correct
syntactic parses!

• Failure to accurately recognize whether a
sentence can be parsed will lead to
misparses, which will in turn lead to
additional errors in downstream
applications.

• Parsing is more “difficult” (greater time
complexity) than recognition

9/17/19 Natalie Parde - UIC CS 421 5

Remember, language is ambiguous!
Input sentences may have many possible parses

VP

VP

PP

S

NP

PRP

I VBP

NP

NNS

IN

NP

NNS

PP NPeat

spaghetti

withchopsticks

VP

VP

NP

S

NP

PRP

I VP

PP

IN

PP

NNSVBP

with chopsticks

NP

NNS

eat spaghetti

9/17/19 Natalie Parde - UIC CS 421 6

There are
many
ways to
generate
parse
trees.

• Goal-driven
• Builds parse tree from the start

symbol down to the terminal nodes

Top-Down Parsing:

• Data-driven
• Builds parse tree from the terminal

nodes up to the start symbol

Bottom-Up Parsing:

9/17/19 Natalie Parde - UIC CS 421 7

These approaches can be implemented naïvely,
or using more advanced techniques.

Naïve approach:
Enumerate all possible

solutions

Dynamic programming
approach: Save partial
solutions in a table, and
use this information to

reduce search time

9/17/19 Natalie Parde - UIC CS 421 8

Top-Down
Parsing

• Assume that the input can be derived by the
designated start symbol S

• Find the tops of all trees that can start with S
• Look for all production rules with S on the

left-hand side
• Find the tops of all trees that can start with

those constituents
• (Repeat recursively until POS categories at

bottom of tree are reached)
• Trees whose leaves fail to match all words in

the input sentence can be rejected, leaving
behind trees that represent successful parses

9/17/19 Natalie Parde - UIC CS 421 9

Top-Down Parsing: Example

Book that flight.

Input Sentence:

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Grammar:

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

Lexicon:

9/17/19 Natalie Parde - UIC CS 421 10

Top-Down Parsing: Example
Book that flight.

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

S S S

9/17/19 Natalie Parde - UIC CS 421 11

Top-Down Parsing: Example
Book that flight.

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

S S S

NP VP Aux NP VP VP

9/17/19 Natalie Parde - UIC CS 421 12

Top-Down Parsing: Example
Book that flight.

S

NP VP

S

NP VP

S

NP VP

S

NP VP

S

NP VP

S

NP VP

S

NP VP

Pronoun Verb Proper-Noun Verb NP Det Nominal Verb NP PP

Pronoun Verb PP Pronoun VP PP Det Nominal Verb Pronoun VerbNPPP

…and many more!

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

9/17/19 Natalie Parde - UIC CS 421 13

Top-Down Parsing: Example
Book that flight.

S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

9/17/19 Natalie Parde - UIC CS 421 14

Top-Down Parsing: Example
Book that flight.

S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

9/17/19 Natalie Parde - UIC CS 421 15

Top-Down Parsing: Example
Book that flight.

S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

9/17/19 Natalie Parde - UIC CS 421 16

Top-Down Parsing: Example
Book that flight.

S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

9/17/19 Natalie Parde - UIC CS 421 17

Top-Down Parsing: Example
Book that flight.

S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

9/17/19 Natalie Parde - UIC CS 421 18

Top-Down Parsing: Example
Book that flight.

S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

9/17/19 Natalie Parde - UIC CS 421 19

Top-Down Parsing: Example
Book that flight.

S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

9/17/19 Natalie Parde - UIC CS 421 20

Bottom-Up
Parsing

• Earliest known parsing algorithm!
• Starts with the words in the input sentence,

and tries to build trees from those words up
by applying rules from the grammar one at
a time

• Looks for places in the in-progress
parse where the righthand side of a
production rule might fit

• Success = parser builds a tree rooted in the
start symbol S that covers all of the input
words

9/17/19 Natalie Parde - UIC CS 421 21

Bottom-Up Parsing: Example

Book that flight.

Input Sentence:

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Grammar:

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

Lexicon:

9/17/19 Natalie Parde - UIC CS 421 22

Bottom-Up Parsing: Example

Book that flight.

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

Noun Det Noun Verb Det Noun

book that flight book that flight

9/17/19 Natalie Parde - UIC CS 421 23

Bottom-Up Parsing: Example
Book that flight.

Noun Det Noun Verb Det Noun

book that flight book that flight

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Nominal Nominal Nominal

9/17/19 Natalie Parde - UIC CS 421 24

Bottom-Up Parsing: Example
Book that flight.

Noun Det Noun Verb Det Noun

book that flight book that flight

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Nominal Nominal Nominal

NP NP

Verb Det Noun

book that flight

NominalVP

9/17/19 Natalie Parde - UIC CS 421 25

Bottom-Up Parsing: Example
Book that flight.

Noun Det Noun Verb Det Noun

book that flight book that flight

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Nominal Nominal Nominal

NP NP

Verb Det Noun

book that flight

NominalVP

NP

VP

9/17/19 Natalie Parde - UIC CS 421 26

Bottom-Up Parsing: Example
Book that flight.

Noun Det Noun Verb Det Noun

book that flight book that flight

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Nominal Nominal Nominal

NP NP

Verb Det Noun

book that flight

NominalVP

NP

VP

S

9/17/19 Natalie Parde - UIC CS 421 27

Bottom-Up Parsing: Example
Book that flight.

Noun Det Noun Verb Det Noun

book that flight book that flight

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Nominal Nominal Nominal

NP NP

Verb Det Noun

book that flight

NominalVP

NP

VP

S

9/17/19 Natalie Parde - UIC CS 421 28

Top-Down
vs.

Bottom-Up
Parsing

• Pros:
• Never wastes time exploring trees that cannot result in a

sentence
• Never explores subtrees that cannot fit into a larger valid

(i.e., results in a sentence) tree
• Cons:

• Spends considerable effort on trees that are not
consistent with the input

Top-Down Parsing

• Pros:
• Never suggests trees that are inconsistent with the input

• Cons:
• Generates many trees and subtrees that cannot result in

a valid sentence (according to production rules specified
by the grammar)

Bottom-Up Parsing

9/17/19 Natalie Parde - UIC CS 421 29

More about
ambiguity….

• Structural Ambiguity: Occurs when a
grammar allows for more than one possible
parse for a given sentence

• Two Forms:
• Attachment Ambiguity: Occurs when a

constituent can be attached to a parse
tree at more than one place

• I eat spaghetti with chopsticks.
• Coordination Ambiguity: Occurs when

different sets of phrases can be
conjoined by a conjunction

• I grabbed a muffin from the table marked
“nut-free scones and muffins,” hoping I’d
parsed the sign correctly.

9/17/19 Natalie Parde - UIC CS 421 30

Remember …local ambiguity can also
exist.

Noun Det Noun Verb Det Noun

book that flight book that flight

• Det → that | this | a
• Noun → book | flight | meal |

money
• Verb → book | include | prefer
• Pronoun → I | she | me
• Proper-Noun → Houston | NWA
• Aux → does
• Preposition → from | to | on |

near | through

9/17/19 Natalie Parde - UIC CS 421 31

All of this ambiguity can lead to really
complex search spaces!
• Backtracking approaches expand the search space incrementally,

systematically exploring one state at a time
• When they arrive at trees inconsistent with the input, they return to an

unexplored alternative
• However, in doing so they tend to discard valid subtrees …this means that

time-consuming work needs to be repeated
• More efficient approach?

• Dynamic programming

9/17/19 Natalie Parde - UIC CS 421 32

Dynamic
Programming

Parsing
Methods

• Tables store subtrees for constituents as
they are discovered

• Solves:
• Re-parsing problem
• (Partially) ambiguity problem, since the

table implicitly stores all possible parses

9/17/19 Natalie Parde - UIC CS 421 33

Dynamic
Programming

Parsing
Methods

• Most widely used methods:
• Cocke-Kasami-Younger (CKY) algorithm
• Earley algorithm
• Chart parsing

9/17/19 Natalie Parde - UIC CS 421 34

CKY Algorithm
• One of the earliest recognition and parsing algorithms
• Bottom-up dynamic programming
• Standard version can only recognize CFGs in Chomsky Normal Form

(CNF)

9/17/19 Natalie Parde - UIC CS 421 35

Chomsky Normal Form
• Grammars are restricted to production rules of the form:

• A → B C
• A → w

• This means that the righthand side of each rule must expand to either two non-
terminals or a single terminal

• Any CFG can be converted to a corresponding CNF grammar that accepts exactly
the same set of strings as the original grammar!

9/17/19 Natalie Parde - UIC CS 421 36

How does this conversion work?
• Three situations we need to address:

1. Production rules that mix terminals and non-terminals on the righthand side
2. Production rules that have a single non-terminal on the righthand side (unit

productions)
3. Production rules that have more than two non-terminals on the righthand side

• Situation #1: Introduce a dummy non-terminal that covers only the original terminal
• INF-VP → to VP could be replaced with INF-VP → TO VP and TO → to

• Situation #2: Replace the non-terminals with the non-unit production rules to which they
eventually lead

• A → B and B → w could be replaced with A → w
• Situation #3: Introduce new non-terminals that spread longer sequences over multiple

rules
• A → B C D could be replaced with A → B X1 and X1 → C D

9/17/19 Natalie Parde - UIC CS 421 37

CNF
Conversion:
Example
• S → NP VP
• S → Aux NP VP
• S → VP
• NP → Pronoun
• NP → Proper-Noun
• NP → Det Nominal
• Nominal → Noun
• Nominal → Nominal Noun
• Nominal → Nominal PP
• VP → Verb
• VP → Verb NP
• VP → Verb NP PP
• VP → Verb PP
• VP → VP PP
• PP → Preposition NP

Original CNF
S → NP VP S → NP VP

S → Aux NP VP S → X1 VP

X1 → Aux NP

S → VP S → book | include | prefer

S → Verb NP

S → X2 PP

X2 → Verb NP

S → Verb PP

S → VP PP

9/17/19 Natalie Parde - UIC CS 421 38

CKY Algorithm
• With the grammar in CNF, each non-terminal node above the POS level of

the parse tree will have exactly two children
• Thus, a two-dimensional matrix can be used to encode the tree structure
• For sentence of length n, work with upper-triangular portion of (n+1) x

(n+1) matrix
• Each cell [i,j] contains a set of non-terminals that represent all constituents

spanning positions i through j of the input
• Cell that represents the entire input resides in position [0,n]

9/17/19 Natalie Parde - UIC CS 421 39

CKY Algorithm
• Non-terminal entries: For each constituent [i,j], there is a position, k, where

the constituent can be split into two parts such that i < k < j
• [i,k] must lie to the left of [i,j] somewhere along row i, and [k,j] must lie

beneath it along column j
• To fill in the parse table, we proceed in a bottom-up fashion so when we fill

a cell [i,j], the cells containing the parts that could contribute to this entry
have already been filled

9/17/19 Natalie Parde - UIC CS 421 40

CKY
Algorithm:

Example

Book the flight through Chicago

S → NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

9/17/19 Natalie Parde - UIC CS 421 41

CKY
Algorithm:

Example

Book the flight through Chicago

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 42

Noun,
Verb

Book the flight through ChicagoCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 43

Noun,
Verb

Det

Book the flight through ChicagoCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 44

Noun,
Verb

Det

Noun

Book the flight through ChicagoCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 45

Noun,
Verb

Det

Noun

Prep.

Book the flight through ChicagoCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 46

Noun,
Verb

Det

Noun

Prep.

PropN

Book the flight through ChicagoCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 47

Noun,
Verb, S,
Nominal,

VP

Det

Noun

Prep.

PropN

Book the flight through ChicagoCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 48

Noun,
Verb, S,
Nominal,

VP

Det

Noun,
Nominal

Prep.

PropN

Book the flight through ChicagoCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 49

Det

Noun,
Nominal

Prep.

PropN,
NP

Book the flight through Chicago

Noun,
Verb, S,
Nominal,

VP

BookCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 50

Det

Noun,
Nominal

Prep.

PropN,
NP

the flight through Chicago

Noun,
Verb, S,
Nominal,

VP

BookCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 51

Det

Noun,
Nominal

Prep.

PropN,
NP

the flight through Chicago

Noun,
Verb, S,
Nominal,

VP

BookCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 52

Det NP

Noun,
Nominal

Prep.

PropN,
NP

the flight through Chicago

Noun,
Verb, S,
Nominal,

VP

BookCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 53

Det NP

Noun,
Nominal

Prep.

PropN,
NP

the flight through Chicago

Noun,
Verb, S,
Nominal,

VP

BookCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 54

Det NP

Noun,
Nominal

Prep.

PropN,
NP

the flight through Chicago

Noun,
Verb, S,
Nominal,

VP

BookCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 55

Det NP

Noun,
Nominal

Prep. PP

PropN,
NP

the flight through Chicago

Noun,
Verb, S,
Nominal,

VP

BookCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 56

Det NP

Noun,
Nominal

Prep. PP

PropN,
NP

the flight through Chicago

Noun,
Verb, S,
Nominal,

VP

BookCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 57

S, VP

Det NP

Noun,
Nominal

Prep. PP

PropN,
NP

the flight through Chicago

Noun,
Verb, S,
Nominal,

VP

BookCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 58

S, VP

Det NP

Noun,
Nominal

Prep. PP

PropN,
NP

the flight through Chicago

Noun,
Verb, S,
Nominal,

VP

BookCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 59

S, VP

Det NP

Noun,
Nominal

Prep. PP

PropN,
NP

the flight through Chicago

Noun,
Verb, S,
Nominal,

VP

BookCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 60

S, VP

Det NP

Noun,
Nominal Nominal

Prep. PP

PropN,
NP

the flight through Chicago

Noun,
Verb, S,
Nominal,

VP

BookCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 61

S, VP

Det NP

Noun,
Nominal Nominal

Prep. PP

PropN,
NP

the flight through Chicago

Noun,
Verb, S,
Nominal,

VP

BookCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 62

S, VP

Det NP

Noun,
Nominal Nominal

Prep. PP

PropN,
NP

the flight through Chicago

Noun,
Verb, S,
Nominal,

VP

BookCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 63

S, VP

Det NP NP

Noun,
Nominal Nominal

Prep. PP

PropN,
NP

the flight through Chicago

Noun,
Verb, S,
Nominal,

VP

BookCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 64

S, VP

Det NP NP

Noun,
Nominal Nominal

Prep. PP

PropN,
NP

the flight through Chicago

Noun,
Verb, S,
Nominal,

VP

BookCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 65

S, VP S, VP

Det NP NP

Noun,
Nominal Nominal

Prep. PP

PropN,
NP

the flight through Chicago

Noun,
Verb, S,
Nominal,

VP

BookCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5
Note that we can arrive at S in a
couple different ways! Each way is an
alternative parse.

9/17/19 Natalie Parde - UIC CS 421 66

CKY Algorithm
• The example we just saw functions as a recognizer …for it to succeed (i.e., find

a valid sentence according to this grammar), is simply needs to find an S in cell
[0,n]

• To return all possible parses, we need to make two changes to the algorithm:
• Pair each non-terminal with pointers to the table entries from which it was

derived
• Permit multiple versions of the same non-terminal to be entered into the table

• Then, we can choose an S from cell [0,n] and recursively retrieve its component
constituents from the table

9/17/19 Natalie Parde - UIC CS 421 67

S, VP S1, S2,
VP

Det NP NP

Noun,
Nominal Nominal

Prep. PP

PropN,
NP

the flight through Chicago

Noun,
Verb, S,
Nominal,

VP

BookCKY
Algorithm:

Example

S → NP VP
S → VP → Verb → book | include | prefer
NP → Pronoun → I | she | me
NP → Proper-Noun → Chicago | Dallas
NP → Det Nominal
Nominal → Noun → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Chicago | Dallas
Aux → does
Preposition → from | to | on | near | through

1

2

3

4

5

9/17/19 Natalie Parde - UIC CS 421 68

CKY
Complexity

Time Complexity:
O(n3)

Space Complexity:
O(n2)

9/17/19 Natalie Parde - UIC CS 421 69

How can we improve upon CKY?

• Fill table in a single sweep over the input words, using a top-down
approach

• Table is length n+1, where n is equivalent to the number of words
• Table entries contain three types of information:

• A subtree corresponding to a single grammar rule
• Information about the progress made in completing the subtree
• The position of the subtree with respect to the input

• This is called Earley parsing

9/17/19 Natalie Parde - UIC CS 421 70

In Earley
parsing,

table entries
are known
as states.

• States include structures called dotted
rules

• A • within the righthand side of a state’s
grammar rule indicates the progress made
towards recognizing it

• A state’s position with respect to the
input is represented by two numbers,
indicating (1) where the state begins, and
(2) where its dot lies

9/17/19 Natalie Parde - UIC CS 421 71

Example
States

• Input: Book that flight.
• S → • VP, [0,0]

• Top-down prediction for this particular kind of S
• First 0: Constituent predicted by this state should

begin at the start of the input
• Second 0: Dot lies at the start of the input as well

• NP → Det • Nominal, [1,2]
• NP begins at position 1
• Det has been successfully parsed
• Nominal is expected next

• VP → V NP •, [0,3]
• Successful discovery of a tree corresponding to

a VP that spans the entire input

9/17/19 Natalie Parde - UIC CS 421 72

Earley Algorithm

• An Earley parser moves through the n+1 sets
of states in a chart in a left-to-right fashion,
processing the states within each set in order

• At each step, one of three operators is applied
to each state depending on its status

• Predictor
• Scanner
• Completer

• This results in the addition of new states to the
end of either the current or next set of states
in the chart

• States are never removed
• The algorithm never backtracks
• The presence of S → 𝛼 •, [0,n] in the list of

states in the last chart entry indicates a
successful parse

9/17/19 Natalie Parde - UIC CS 421 73

Earley
Operators:
Predictor

• Creates new states representing top-down
expectations

• Applied to any state that has a non-terminal
immediately to the right of its dot (as long as
the non-terminal is not a POS category)

• New states are placed into the same chart
entry as the generating state

• They begin and end at the same point in the
input where the generating state ends

Predictor

• VP → • Verb, [0,0]
• VP → • Verb NP, [0,0]
• VP → • Verb NP PP, [0,0]
• VP → • Verb PP, [0,0]
• VP → • VP PP, [0,0]

S → • VP, [0,0]

9/17/19 Natalie Parde - UIC CS 421 74

Earley Operators: Scanner
• Used when a state has a POS category to the right of the dot
• Examines input and incorporates a state corresponding to the prediction of

a word with a particular POS into the chart
• Does so by creating a new state from the input state with the dot advanced

over the predicted input category
• VP → • Verb NP, [0,0]

• Since category following the dot is a part of speech (Verb)….
• Verb → book •, [0,1]

9/17/19 Natalie Parde - UIC CS 421 75

Earley Operators: Completer
• Applied to a state when its dot has reached the right end of the rule
• Indicates that the parser has successfully discovered a particular grammatical category

over some span of input
• Purpose: Find and advance all previously created states that were looking for this

grammatical category at this position in the input
• New states are created by copying the older state, advancing the dot over the expected

category, and installing the new state in the current chart entry
• NP → Det Nominal •, [1,3]

• What incomplete states end at position 1 and expect an NP?
• VP → Verb • NP, [0,1]
• VP → Verb • NP PP, [0,1]
• So, add VP → Verb NP •, [0,3] and the new incomplete VP → Verb NP • PP, [0,3] to

the chart

9/17/19 Natalie Parde - UIC CS 421 76

Earley Algorithm:
Example

Chart State Rule Start, End Operator
0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

S → NP VP
S → VP
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
VP → Verb
VP → Verb NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer

9/17/19 Natalie Parde - UIC CS 421 77

Earley Algorithm:
Example

Chart State Rule Start, End Operator
0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

1 S6 Verb → book • 0, 1 Scanner

1 S7 VP → Verb • 0, 1 Completer

1 S8 VP → Verb • NP 0, 1 Completer

1 S9 S → VP • 0, 1 Completer

1 S10 NP → • Det Nominal 1, 1 Predictor

S → NP VP
S → VP
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
VP → Verb
VP → Verb NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer

9/17/19 Natalie Parde - UIC CS 421 78

Earley Algorithm:
Example

Chart State Rule Start, End Operator
0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

1 S6 Verb → book • 0, 1 Scanner

1 S7 VP → Verb • 0, 1 Completer

1 S8 VP → Verb • NP 0, 1 Completer

1 S9 S → VP • 0, 1 Completer

1 S10 NP → • Det Nominal 1, 1 Predictor

2 S11 Det → that • 1, 2 Scanner

2 S12 NP → Det • Nominal 1, 2 Completer

2 S13 Nominal → • Noun 2, 2 Predictor

2 S14 Nominal → • Nominal Noun 2, 2 Predictor
S → NP VP
S → VP
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
VP → Verb
VP → Verb NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer

9/17/19 Natalie Parde - UIC CS 421 79

Earley Algorithm:
Example

Chart State Rule Start, End Operator
0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

1 S6 Verb → book • 0, 1 Scanner

1 S7 VP → Verb • 0, 1 Completer

1 S8 VP → Verb • NP 0, 1 Completer

1 S9 S → VP • 0, 1 Completer

1 S10 NP → • Det Nominal 1, 1 Predictor

2 S11 Det → that • 1, 2 Scanner

2 S12 NP → Det • Nominal 1, 2 Completer

2 S13 Nominal → • Noun 2, 2 Predictor

2 S14 Nominal → • Nominal Noun 2, 2 Predictor

3 S15 Noun → flight • 2, 3 Scanner

3 S16 Nominal → Noun • 2, 3 Completer

3 S17 NP → Det Nominal • 1, 3 Completer

3 S18 Nominal → Nominal • Noun 2, 3 Completer

3 S19 VP → Verb NP • 0, 3 Completer

3 S20 S → VP • 0, 3 Completer

S → NP VP
S → VP
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
VP → Verb
VP → Verb NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer

9/17/19 Natalie Parde - UIC CS 421 80

Which
states
participate
in the final
parse?

Chart State Rule Start, End Operator

0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

1 S6 Verb → book • 0, 1 Scanner

1 S7 VP → Verb • 0, 1 Completer

1 S8 VP → Verb • NP 0, 1 Completer

1 S9 S → VP • 0, 1 Completer

1 S10 NP → • Det Nominal 1, 1 Predictor

2 S11 Det → that • 1, 2 Scanner

2 S12 NP → Det • Nominal 1, 2 Completer

2 S13 Nominal → • Noun 2, 2 Predictor

2 S14 Nominal → • Nominal Noun 2, 2 Predictor

3 S15 Noun → flight • 2, 3 Scanner

3 S16 Nominal → Noun • 2, 3 Completer

3 S17 NP → Det Nominal • 1, 3 Completer

3 S18 Nominal → Nominal • Noun 2, 3 Completer

3 S19 VP → Verb NP • 0, 3 Completer

3 S20 S → VP • 0, 3 Completer

9/17/19 Natalie Parde - UIC CS 421 81

As with
CKY, the
example

algorithm
acted as a

recognizer.

• We can retrieve parse trees by adding a
field to store information about the
completed states that generated
constituents

• How to do this?
• Have the Completer operator add a

pointer to the previous state onto a list of
constituent states for the new state

• When an S is found in the final chart,
just follow pointers backward

9/17/19 Natalie Parde - UIC CS 421 82

Which
states
participate
in the final
parse?

Chart State Rule Start, End Operator (Backward Pointer)

0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

1 S6 Verb → book • 0, 1 Scanner

1 S7 VP → Verb • 0, 1 Completer

1 S8 VP → Verb • NP 0, 1 Completer

1 S9 S → VP • 0, 1 Completer

1 S10 NP → • Det Nominal 1, 1 Predictor

2 S11 Det → that • 1, 2 Scanner

2 S12 NP → Det • Nominal 1, 2 Completer

2 S13 Nominal → • Noun 2, 2 Predictor

2 S14 Nominal → • Nominal Noun 2, 2 Predictor

3 S15 Noun → flight • 2, 3 Scanner

3 S16 Nominal → Noun • 2, 3 Completer (S15)

3 S17 NP → Det Nominal • 1, 3 Completer (S11, S15)

3 S18 Nominal → Nominal • Noun 2, 3 Completer

3 S19 VP → Verb NP • 0, 3 Completer (S6, S17)

3 S20 S → VP • 0, 3 Completer (S19)

9/17/19 Natalie Parde - UIC CS 421 83

Summary:
Syntactic

Parsing

• Syntactic parsing is the process of
automatically determining the grammatical
structure of an input sentence

• Language is ambiguous, so sentences can
have multiple grammatically-correct
parses

• Parsing can be performed using either a
top-down or bottom-up approach

• Common algorithms for syntactic parsing
include:

• CKY
• Earley

9/17/19 Natalie Parde - UIC CS 421 84

What is
dependency

parsing?

• Automatically determining directed
grammatical (and semantic!)
relationships between words in a
sentence.

• Syntactic: Focused on sentence structure
• Semantic: Focused on meaning

9/17/19 Natalie Parde - UIC CS 421 85

How are dependency
grammars different

from CFGs?

• CFGs are used to automatically
generate constituent-based
representations

• Noun phrases, verb phrases, etc.
• Dependency grammars ignore

phrase-structure rules, and instead
define sentence structure in terms of
the relationships between individual
words

• Nominal subject, direct object,
etc.

• For both, labels are still drawn from
a fixed inventory of grammatical
relations

9/17/19 Natalie Parde - UIC CS 421 86

Dependency
grammars can
deal with
languages that
are
morphologically
rich and have a
relatively free
word order.

Morphologically rich: More inflections (changes to
words that influence meaning or grammatical relation)

Free word order: Words can be moved around in a
sentence but the overall meaning will remain the same
(syntax is less important)

Typically, there is a trade-off between morphological
richness and importance of syntax

9/17/19 Natalie Parde - UIC CS 421 87

Typed Dependency Structure

I prefer the morning flight through Dallas

nsubj

root
dobj

det

nmod

nmod

case

9/17/19 Natalie Parde - UIC CS 421 88

Comparison with Syntactic Parse

I prefer the morning flight through Dallas

nsubj

root
dobj

det

nmod

nmod

case

I

prefer

the morning

flight

through

Dallas

vs.

S

NP VP

Pronoun Verb NP

Det Nominal

Nominal PP

Nominal Noun Prep. NP

PropN

I prefer

the

morning

Noun flight through

Dallas
9/17/19 Natalie Parde - UIC CS 421 89

Why is dependency
parsing useful?

• Dependency parsing provides an
approximation of the semantic
relationships between different
words in a sentence and their
arguments

• This information is useful for many
NLP applications, including:

• Coreference resolution
• Question answering
• Information extraction

9/17/19 Natalie Parde - UIC CS 421 90

Dependency
Relations

• Two components:
• Head
• Dependent

• Heads are linked to the words that are
immediately dependent on them

• Relation types describe the dependent’s
role with respect to its head

• Subject
• Direct object
• Indirect object

9/17/19 Natalie Parde - UIC CS 421 91

Dependency
Relations

• Relation types tend to correlate with
sentence position and constituent type in
English, but there is not an explicit
connection between these elements

• In more flexible languages (e.g., those with
relatively free word order), the information
encoded in these relation types often
cannot be estimated otherwise (e.g., by
using a constituent tree)

9/17/19 Natalie Parde - UIC CS 421 92

Just like with
CFGs, there
are a variety
of taxonomies
that can be
used to label
dependencies
between
words.

These are often referred to as dependency treebanks

A few of the most popular dependency treebanks
include:

• Stanford dependencies
• CoNLL dependencies
• Universal dependencies

Just like with other corpora we've discussed so far,
these treebanks are typically created by either:

• Having human annotators manually create
dependency structures for a collection of sentences

• Automatically creating initial dependency structures
and then having human annotators manually correct
those structures

9/17/19 Natalie Parde - UIC CS 421 93

Recently, most
researchers
have moved

toward using
universal

dependencies.

• Universal dependencies can be broken into
two sets

• Clausal Relations: Describe syntactic
roles with respect to predicates (the
part(s) of the sentence that say
something about the subject)

• Modifier Relations: Describe the ways
that words can modify their heads

9/17/19 Natalie Parde - UIC CS 421 94

Clausal Relations

I prefer the morning flight through Dallas

nsubj

root
dobj

det

nmod

nmod

case

9/17/19 Natalie Parde - UIC CS 421 95

Modifier Relations

I prefer the morning flight through Dallas

nsubj

root
dobj

det

nmod

nmod

case

9/17/19 Natalie Parde - UIC CS 421 96

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

9/17/19 Natalie Parde - UIC CS 421 97

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

Natalie wrote a dissertation.
nsubj(wrote, Natalie)

Natalie wrote a dissertation.
obj(wrote, dissertation)

Natalie wrote him a dissertation.
iobj(wrote, him)

9/17/19 Natalie Parde - UIC CS 421 98

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

Natalie wrote a dissertation for him.
obl(wrote, him)

Natalie, read my dissertation!
vocative(read, Natalie)

It is clear that her dissertation is a masterpiece.
expl(clear, it)

You must not eat it, the dissertation.
dislocated(eat, dissertation)

9/17/19 Natalie Parde - UIC CS 421 99

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

The purpose of this dissertation is to determine an optimal
strategy for selecting fantasy football teams.
nmod(purpose, dissertation)

My advisor, Natalie, is boring me.
appos(advisor, Natalie)

Yesterday she wrote five dissertations.
nummod(dissertations, five)

9/17/19 Natalie Parde - UIC CS 421 100

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

What she said about only choosing
fantasy football players from northern
teams makes sense.
csubj(makes, said)

She said to read her second dissertation
for more tips.
ccomp(said, read)

I consider her a genius.
xcomp(consider, genius)

9/17/19 Natalie Parde - UIC CS 421 101

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

He was upset when she read her
dissertation to him.
advcl(upset, read)

9/17/19 Natalie Parde - UIC CS 421 102

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

She added an appendix discussing
fantasy bachelor.
acl(appendix, discussing)

9/17/19 Natalie Parde - UIC CS 421 103

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

He was deeply offended by the
generalization from football to reality show.
advmod(offended, deeply)

She said, “Well, I have other dissertations that explain this further.”
discourse(explain, well)

9/17/19 Natalie Parde - UIC CS 421 104

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

He sat with rapt attention as she
began reading an excerpt from her
third dissertation.
amod(attention, rapt)

9/17/19 Natalie Parde - UIC CS 421 105

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

She had included case studies.
aux(included, had)

The studies demonstrated that both fantasy games
were essentially the same.
cop(same, were)

He knew that this would change life as he knew it.
mark(change, that)

9/17/19 Natalie Parde - UIC CS 421 106

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

She told him that was the point.
det(point, the)

Then she waved goodbye and went to her office.
case(office, to)

9/17/19 Natalie Parde - UIC CS 421 107

https://universaldependencies.org/u/dep/index.html

In-Class
Exercise
• Assign universal

dependency relations to the
following sentences:

• Time flies like an
arrow.

• Fruit flies like a
banana.

https://www.google.com/searc
h?q=timer

Nominals Clauses Modifier
Words

Function
Words

Core
Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents
of Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents
of Nominals

nmod
appos

nummod
acl amod det

case

9/17/19 Natalie Parde - UIC CS 421 108

https://www.google.com/search?q=timer

In-Class Exercise

Time flies like an arrow

Fruit flies like a banana

nsubj nmod case det compound obj
9/17/19 Natalie Parde - UIC CS 421 109

Dependency
Formalisms

• Dependency structures are directed graphs
• G = (V, A)

• V is a set of vertices
• A is a set of ordered pairs of vertices, or

arcs
• V corresponds to the words in a sentence

• May also include punctuation
• In morphologically complex languages,

may include stems and affixes
• Arcs capture the grammatical relationships

between those words
• According to most grammatical theories (including

those followed in this course), dependency
structures:

• Must be connected
• Must have a designated root node
• Must be acyclic

9/17/19 Natalie Parde - UIC CS 421 110

Dependency Trees

• Directed graphs (such as those
we’ve seen already) that satisfy the
following constraints:

• Single designated root node
• No incoming arcs to the root!

• All vertices except the root node
have exactly one incoming arc

• There is a unique path from the
root node to each vertex

9/17/19 Natalie Parde - UIC CS 421 111

How to
translate
from
constituent
to
dependency
structures?

• Identify all head-dependent relations in
the constituent tree

• Identify the correct dependency
relations for those relations

Two steps:

• Mark the head child of each node in a
phrase structure, based on a set of
predetermined rules

• In the dependency structure, make the
head of each non-head child depend
on the head of the head child

One algorithm for doing this:

9/17/19 Natalie Parde - UIC CS 421 112

However,
doing this

can
produce

results that
are far from

perfect!

• Most noun phrases do not have much (or
any) internal structure

• Morphological information has little to no
presence in phrase structure trees

• For low resource languages in particular,
most dependency treebanks are developed
manually by human annotators rather than
attempting to automatically translate from
constituent to dependency parse

9/17/19 Natalie Parde - UIC CS 421 113

Types of Dependency Parsers

Transition-based
• Build a single tree in a left-to-right (assuming a left-to-right language)

sweep over the input sentence
Transition

Graph-based
• Search through the space of possible trees for a given sentence, and try

to find the tree that maximizes some score
Graph

9/17/19 Natalie Parde - UIC CS 421 114

Transition-based
Dependency

Parsing

• Earliest transition-based approach:
shift-reduce parsing

• Input tokens are successively
shifted onto a stack

• The two top elements of the
stack are matched against a set
of possible relations provided by
some knowledge source

• When a match is found, a head-
dependent relation between the
matched elements is asserted

• Goal is to find a final parse that
accounts for all words

9/17/19 Natalie Parde - UIC CS 421 115

Shift-Reduce Parsing

Oracle

Stack Input BufferDependency Relations

9/17/19 Natalie Parde - UIC CS 421 116

Transition-based
Parsing

• We can build upon shift-reduce
parsing by defining a set of
transition operators to guide the
parser’s decisions

• Transition operators work by
producing new configurations:

• Stack
• Input buffer of words
• Set of relations representing a

dependency tree

9/17/19 Natalie Parde - UIC CS 421 117

Transition-
based
Parsing

• Stack contains the ROOT node
• Word list is initialized with all words

in the sentence, in order
• Empty set of relations represents

the parse

Initial configuration:

• Stack should be empty
• Word list should be empty
• Set of relations represents the

parse

Final configuration:

9/17/19 Natalie Parde - UIC CS 421 118

Operators

• The operators used in transition-
based parsing then perform the
following tasks:

• Assign the current word as the
head of some other word that
has already been seen

• Assign some other word that has
already been seen as the head of
the current word

• Do nothing with the current word

9/17/19 Natalie Parde - UIC CS 421 119

Operators

• More formally, these operators are defined as:
• LeftArc: Asserts a head-dependent relation

between the word at the top of the stack and the
word directly beneath it (the second word), and
removes the second word from the stack

• Cannot be applied when ROOT is the second
element in the stack

• Requires two elements on the stack
• RightArc: Asserts a head-dependent relation

between the second word and the word at the
top of the stack, and removes the word at the top
of the stack

• Requires two elements on the stack
• Shift: Removes a word from the front of the

input buffer and pushes it onto the stack
• These operators implement the arc standard

approach to transition-based parsing

9/17/19 Natalie Parde - UIC CS 421 120

Arc
Standard
Approach to
Transition-
based
Parsing

• Transition operators only assert
relations between elements at the
top of the stack

• Once an element has been assigned
its head, it is removed from the stack
• Not available for further processing!

Notable characteristics:

• Reasonably effective
• Simple to implement

Benefits:

9/17/19 Natalie Parde - UIC CS 421 121

Formal Algorithm: Arc Standard
Approach
state ← {[root], [words], []}

while state not final:

Choose which transition operator to apply

transition ← oracle(state)

Apply the operator and create a new state

state ← apply(transition, state)

9/17/19 Natalie Parde - UIC CS 421 122

When does
the process

end?

• When all words in the sentence have been
consumed

• When the ROOT node is the only element
remaining on the stack

9/17/19 Natalie Parde - UIC CS 421 123

Is this another
example of

dynamic
programming?

• No! 😮
• The arc standard approach is a greedy

algorithm
• Oracle provides a single choice at each

step
• Parser proceeds with that choice

• No other options explored
• No backtracking

• Single parse returned at the end

9/17/19 Natalie Parde - UIC CS 421 124

Arc Standard: Example
book me the morning flightInput Buffer

Stack root

Relations

9/17/19 Natalie Parde - UIC CS 421 125

Arc Standard: Example
me the morning flightInput Buffer

Stack book root

Relations

Only one item in the stack!

Shift book from the input
buffer to the stack

9/17/19 Natalie Parde - UIC CS 421 126

Arc Standard: Example
the morning flightInput Buffer

Stack me book root

Relations

Valid options: Shift, RightArc

Oracle selects Shift

Shift me from the input
buffer to the stack

9/17/19 Natalie Parde - UIC CS 421 127

Arc Standard: Example
the morning flightInput Buffer

Stack book root

(book → me)Relations

Valid options: Shift,
RightArc, LeftArc

Oracle selects RightArc

Remove me from the stack

Add relation (book → me) to
the set of relations

9/17/19 Natalie Parde - UIC CS 421 128

Arc Standard: Example
morning flightInput Buffer

Stack the book root

(book → me)Relations

Valid options: Shift, RightArc

Oracle selects Shift

Shift the from the input
buffer to the stack

9/17/19 Natalie Parde - UIC CS 421 129

Arc Standard: Example
flightInput Buffer

Stack morning the book root

(book → me)Relations

Valid options: Shift,
RightArc, LeftArc

Oracle selects Shift

Shift morning from the input
buffer to the stack

9/17/19 Natalie Parde - UIC CS 421 130

Arc Standard: Example
Input Buffer

Stack flight morning the book root

(book → me)Relations

Valid options: Shift,
RightArc, LeftArc

Oracle selects Shift

Shift flight from the input
buffer to the stack

9/17/19 Natalie Parde - UIC CS 421 131

Arc Standard: Example
Input Buffer

Stack flight the book root

(book → me)
(flight → morning)Relations

Valid options: RightArc,
LeftArc

Oracle selects LeftArc

Remove morning from the
stack

Add relation (flight →
morning) to the set of
relations

9/17/19 Natalie Parde - UIC CS 421 132

Arc Standard: Example
Input Buffer

Stack flight book root

(book → me)
(flight → morning)

(flight → the)
Relations

Valid options: RightArc,
LeftArc

Oracle selects LeftArc

Remove the from the stack

Add relation (flight → the) to
the set of relations

9/17/19 Natalie Parde - UIC CS 421 133

Arc Standard: Example
Input Buffer

Stack book root

(book → me)
(flight → morning)

(flight → the)
(book → flight)

Relations

Valid options: RightArc,
LeftArc

Oracle selects RightArc

Remove flight from the
stack

Add relation (book → flight)
to the set of relations

9/17/19 Natalie Parde - UIC CS 421 134

Arc Standard: Example
Input Buffer

Stack root

(book → me)
(flight → morning)

(flight → the)
(book → flight)
(root → book)

Relations

Valid options: RightArc

Oracle selects RightArc

Remove book from the
stack

Add relation (root → book)
to the set of relations

9/17/19 Natalie Parde - UIC CS 421 135

Arc Standard: Example
Input Buffer

Stack root

(book → me)
(flight → morning)

(flight → the)
(book → flight)
(root → book)

Relations

Valid options: None

State is final

book me the morning flight

9/17/19 Natalie Parde - UIC CS 421 136

A few things
worth

noting….

• We assumed in the previous example that
our oracle was always correct …this is not
necessarily (or perhaps not even likely) the
case!

• Incorrect choices lead to incorrect
parses since the algorithm cannot
perform any backtracking

• Alternate sequences may also lead to
equally valid parses

9/17/19 Natalie Parde - UIC CS 421 137

How do we get actual dependency
labels?

• Parameterize LeftArc and RightArc
• LeftArc(nsubj), RightArc(obj), etc.

• Of course, this makes the oracle’s job
more difficult (much larger set of
operators from which to choose!)

iobj(book → me)
compound(flight → morning)

det(flight → the)
obj(book → flight)
root(root → book)

9/17/19 Natalie Parde - UIC CS 421 138

How does the oracle know what to
choose?

• State of the art systems use supervised machine
learning for this task

• This requires a training set of configurations labeled with
correct transition operators

• The person designing the system needs to decide what
types of features should be extracted from these
configurations to best train the oracle (a machine learning
model)

• The oracle will then learn which transitions to predict for
previously-unseen configurations based on the extracted
features and associated labels for configurations in the
training set

9/17/19 Natalie Parde - UIC CS 421 139

What
types of
machine
learning
models
are used
as
oracles?

• Logistic regression
• Support vector machines

Commonly:

• Neural networks

Recently:

9/17/19 Natalie Parde - UIC CS 421 140

Graph-based
Dependency

Parsing

• Search through the space of
possible trees for a given sentence,
attempting to maximize some score

• This score is generally a function of
the scores of individual subtrees
within the overall tree

• Edge-factored approaches
determine scores based on the
scores of the edges that comprise
the tree

• overall_score(t) = ∑$∈& 𝑠𝑐𝑜𝑟𝑒(𝑒)
• Letting t be a tree for a given

sentence, and e be its edges

9/17/19 Natalie Parde - UIC CS 421 141

Why use
graph-
based

methods for
dependency

parsing?

• Transition-based methods tend to have high
accuracy on shorter dependency relations,
but that accuracy declines as the distance
between the two words increases

• This is largely due to the fact that transition-
based methods are greedy …they can be
fooled by seemingly-optimal local solutions

• Graph-based methods score entire trees,
thereby avoiding that issue

9/17/19 Natalie Parde - UIC CS 421 142

Maximum
Spanning
Tree

Given an input sentence, construct a
fully-connected, weighted, directed
graph

• Vertices are input words
• Directed edges represent all possible head-

dependent assignments
• Weights reflect the scores for each possible

head-dependent assignment, predicted by a
supervised machine learning model

A maximum spanning tree represents
the preferred dependency parse for
the sentence, as determined by the
weights

9/17/19 Natalie Parde - UIC CS 421 143

Maximum Spanning Tree: Example

root book

that

flight

4
4

12 5

6

5

7

8

7

9/17/19 Natalie Parde - UIC CS 421 144

Maximum Spanning Tree: Example

root book

that

flight

4
4

12 5

6

5

7

8

7

9/17/19 Natalie Parde - UIC CS 421 145

Two
intuitions to

keep in
mind….

• Every vertex in a spanning tree has exactly
one incoming edge

• Absolute values of the edge scores are not
critical

• Relative weights of the edges entering a
vertex are what matter!

9/17/19 Natalie Parde - UIC CS 421 146

How do we know
that we have a
spanning tree?

• Given a fully-connected graph G =
(V, E), a subgraph T = (V, F) is a
spanning tree if:

• It has no cycles
• Each vertex (except the root) has

exactly one edge entering it

9/17/19 Natalie Parde - UIC CS 421 147

How do we
know that
we have a
maximum
spanning

tree?

• If the greedy selection process produces
a spanning tree, then that tree is the
maximum spanning tree

• However, the greedy selection process may
select edges that result in cycles

• If this happens, an alternate graph can be
created that collapses cycles into new
nodes, with edges that previously entered
or exited the cycle now entering or exiting
the new node

• The greedy selection process is then
recursively applied to the new graph until a
(maximum) spanning tree is found

9/17/19 Natalie Parde - UIC CS 421 148

Formal Algorithm
F ← []

T ← []

score’ ← []

for each v in V do:

bestInEdge ← argmax
$3(4,6)∈7

𝑠𝑐𝑜𝑟𝑒[𝑒]

F ← F ∪ bestInEdge

for each 𝑒 = 𝑢, 𝑣 ∈ 𝐸 do:

score’[e] ← score[e] - score[bestInEdge]

if T=(V,F) is a spanning tree:

return T

else:

C ← a cycle in F

G’ ← collapse(G, C)

T’ ← maxspanningtree(G’, root, score’) # Recursively call the current function

T ← expand(T’, C)

return T

9/17/19 Natalie Parde - UIC CS 421 149

Maximum Spanning Tree: Updated
Example

root book

that

flight

4
4

12 5

6

5

7

8

7

9/17/19 Natalie Parde - UIC CS 421 150

Maximum Spanning Tree: Updated
Example

root book

that

flight

4
4

12 5

6

5

7

8

7

9/17/19 Natalie Parde - UIC CS 421 151

Maximum Spanning Tree: Updated
Example

root book
12

that
7

flight
8

-4
-3

0 -2

-6

-7

-1

0

0

9/17/19 Natalie Parde - UIC CS 421 152

Maximum Spanning Tree: Updated
Example

root book
12

that-
flight

-1

-4
-3

0 -2

-6

-7

-1

9/17/19 Natalie Parde - UIC CS 421 153

Maximum Spanning Tree: Updated
Example

root book
12

that-
flight

-1

-4
-3

0 -2

-6

-7

-1

9/17/19 Natalie Parde - UIC CS 421 154

Maximum Spanning Tree: Updated
Example

root book
12

that
7

flight
8

-4
-3

0 -2

-6

-7

-1

0

0

9/17/19 Natalie Parde - UIC CS 421 155

Maximum Spanning Tree: Updated
Example

root book
12

that
7

flight
8

-4
-3

0 -2

-6

-7

-1

0

0

9/17/19 Natalie Parde - UIC CS 421 156

Maximum Spanning Tree: Updated
Example

root book
12

that
7

flight
8

-4
-3

0 -2

-6

-7

-1

0

0

9/17/19 Natalie Parde - UIC CS 421 157

How do we
train our
model to

predict
edge

weights?

• Similar approach to training the oracle in a
transition-based parser

• Common features can include:
• Words, lemmas, parts of speech
• Corresponding features from contexts

before and after words
• Word embeddings
• Dependency relation type
• Dependency relation direction
• Distance from head to dependent

9/17/19 Natalie Parde - UIC CS 421 158

Summary:
Dependency

Parsing

• Dependency parsing is the process of
automatically determining directed relationships
between words in a source sentence

• Many dependency taxonomies exist, but the most
common taxonomy for English text is the set of
universal dependencies

• Dependency parsers can be transition-based or
graph-based

• A popular transition-based method is the arc
standard approach

• A popular graph-based method is the maximum
spanning tree approach

• Both make use of supervised machine learning to
aid the decision-making process

9/17/19 Natalie Parde - UIC CS 421 159

